Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Braz. j. med. biol. res ; 55: e11901, 2022. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1364554

ABSTRACT

We examined whether endurance performance and neuromuscular fatigue would be affected by caffeine ingestion during closed- and open-loop exercises. Nine cyclists performed a closed-loop (4,000-m cycling time trial) and an open-loop exercise (work rate fixed at mean power of the closed-loop trial) 60 min after ingesting caffeine (CAF, 5 mg/kg) or placebo (PLA, cellulose). Central and peripheral fatigue was quantified via pre- to post-exercise decrease in quadriceps voluntary activation and potentiated twitch force, respectively. Test sensitivity for detecting caffeine-induced improvements in exercise performance was calculated as the mean change in time divided by the error of measurement. Caffeine ingestion reduced the time of the closed-loop trial (PLA: 375.1±14.5 s vs CAF: 368.2±14.9 s, P=0.024) and increased exercise tolerance during the open-loop trial (PLA: 418.2±99.5 s vs CAF: 552.5±106.5 s, P=0.001), with similar calculated sensitivity indices (1.5, 90%CI: 0.7-2.9 vs 2.8, 90%CI: 1.9-5.1). The reduction in voluntary activation was more pronounced (P=0.019) in open- (-6.8±8.3%) than in closed-loop exercises (-1.9±4.4%), but there was no difference between open- and closed-loop exercises for the potentiated twitch force reduction (-25.6±12.8 vs -26.6±12.0%, P>0.05). Caffeine had no effect on central and peripheral fatigue development in either mode of exercise. In conclusion, caffeine improved endurance performance in both modes of exercise without influence on post-exercise central and peripheral fatigue, with the open-loop exercise imposing a greater challenge to central fatigue tolerance.

2.
São Paulo; s.n; s.n; 2020. 27 p. tab, graf.
Thesis in English | LILACS | ID: biblio-1361417

ABSTRACT

Fatigue is defined as the inability to maintain muscle power and strength, impairing performance. Nutritional interventions have been used to delay this phenomenon, such as glutamine and alanine supplementation. These amino acids might attenuate several causes of fatigue, since they are important energy substrates, transport ammonia avoiding the accumulation of this toxic metabolite and attenuate muscle damage and oxidative stress. Thus, the aim of this study was to evaluate the effects of glutamine and alanine supplementation on central and muscle fatigue parameters of rats submitted to resistance training (RT). Forty adult Wistar rats (60 days) were distributed into five groups: SED (sedentary, receiving water), CON (trained, receiving water), ALA, G+A and DIP (trained and supplemented with alanine, glutamine and alanine in their free form, and Lalanyl-L-glutamine, respectively). Trained groups underwent a ladder-climbing exercise, with progressive loads, for eight weeks. Supplements were diluted in water to a 4% concentration and offered ad libitum during the last 21 days of experiment. RT increased plasma glucose, the muscle concentrations of ammonia and glutathione (GSH) and the muscle damage parameters - plasma creatine kinase (CK) and lactate dehydrogenase (LDH), whereas decreased muscle glycogen. G+A supplementation prevented the increase of muscle ammonia by RT, while ALA and G+A administration reduced plasma CK and LDH, and DIP supplementation increased the muscle content of glycogen and LDH. Contrary to expectations, DIP administration increased central fatigue parameters, such as plasma concentration of free fatty acids (FFA), hypothalamic content of serotonin and serotonin/dopamine ratio. Despite these results, there was no difference between groups in the maximum carrying capacity (MCC) tests. In conclusion, supplementation with glutamine and alanine improves some fatigue parameters, but does not affect physical performance of rats submitted to RT


O termo fadiga é definido como a incapacidade de manutenção da força e da potência musculares, prejudicando a performance. Intervenções nutricionais têm sido utilizadas para retardar este fenômeno, como a suplementação com glutamina e alanina. Estes aminoácidos poderiam atenuar diversas causas de fadiga, pois são importantes substratos energéticos, carreiam amônia evitando o acúmulo deste metabólito tóxico e atenuam a lesão muscular e o estresse oxidativo. Logo, o objetivo deste estudo foi avaliar os efeitos da suplementação com glutamina e alanina sobre parâmetros de fadiga central e muscular em ratos submetidos ao treinamento resistido (TR). Foram utilizados 40 ratos Wistar adultos (60 dias de idade), distribuídos nos grupos: SED (não treinados, recebendo água), CON (treinados, recebendo água), ALA, G+A e DIP (treinados e suplementados com alanina, glutamina e alanina livres, e L-alanil-L-glutamina, respectivamente). Os grupos treinados realizaram um exercício de escalada em escada, com aumento progressivo de carga, durante oito semanas. A suplementação foi diluída a 4% em água e ofertada via oral, ad libitum, durante os últimos 21 dias de experimento. O TR aumentou a glicemia, as concentrações musculares de amônia e de glutationa (GSH) e os parâmetros de lesão muscular - creatina quinase (CK) e lactato desidrogenase (LDH) no plasma, enquanto reduziu o glicogênio no músculo. A suplementação com G+A preveniu o aumento de amônia muscular promovido pelo TR, enquanto a administração de ALA e G+A reduziu as concentrações de CK e LDH no plasma, e a suplementação com DIP aumentou o conteúdo muscular de glicogênio e de LDH. Ao contrário do esperado, a administração de DIP aumentou parâmetros de fadiga central, como as concentrações plasmáticas de ácidos graxos livres, o conteúdo hipotalâmico de serotonina e a razão serotonina/dopamina. Apesar disso, não houve diferença entre os grupos nos testes de carga máxima. Em conclusão, a suplementação com glutamina e alanina melhora alguns parâmetros de fadiga, mas não afeta o desempenho físico em ratos submetidos ao TR


Subject(s)
Animals , Male , Female , Rats , Dietary Supplements/classification , Alanine/antagonists & inhibitors , Fatigue/classification , Glutamine/antagonists & inhibitors , Blood Glucose/immunology , Water/pharmacology , Exercise/physiology , Resistance Training/methods , Physical Functional Performance
3.
RBCF, Rev. bras. ciênc. farm. (Impr.) ; 44(4): 563-575, out.-dez. 2008. ilus
Article in Portuguese | LILACS | ID: lil-507908

ABSTRACT

Em humanos saudáveis, nove aminoácidos são considerados essenciais, uma vez que não podem ser sintetizados endogenamente e, portanto, devem ser ingeridos por meio da dieta. Dentre os aminoácidos essenciais, se incluem os três aminoácidos de cadeia ramificada, ou seja, leucina, valina e isoleucina. Esses aminoácidos participam da regulação do balanço protéico corporal além de serem fonte de nitrogênio para a síntese de alanina e glutamina. No tocante à regulação da síntese protéica muscular, verifica-se que a leucina age estimulando a fase de iniciação da tradução do RNA-mensageiro em proteína, por mecanismos tanto dependentes quanto independentes de insulina. No que concerne ao exercício físico, supõe-se que esses aminoácidos estejam envolvidos na fadiga central, no balanço protéico muscular, na secreção de insulina, na modulação da imunocompetência, no aumento da performance de indivíduos que se exercitam em ambientes quentes e na diminuição do grau de lesão muscular. Nesse contexto, essa revisão aborda os aspectos atuais do metabolismo e da suplementação de aminoácidos de cadeia ramificada no exercício físico.


In healthy humans, nine amino acids are considered to be essential once they cannot be endogenously synthesised and must therefore be ingested in the diet. Amongst the essential amino acids are the three branched chain amino acids, namely, leucine, valine and isoleucine. These amino acids participate in the regulation of protein balance in addition to being nitrogen sources for the synthesis of alanine and glutamine. As to the regulation of muscle protein synthesis, leucine acts in the stimulation of initiation of mRNA translation into protein, both through mechanisms that are dependent and independent of insulin. In the physiology of physical exercise, these branched amino acids play a role in central fatigue hypothesis, in muscle protein balance, in the secretion of insulin, in the modulation of the immune response, in performance enhancement of individuals who work out in hot environments, and in avoiding muscle lesion. This review approaches all aspects of the metabolism of and supplementation with branched chain amino acids in physical exercise.


Subject(s)
Humans , Amino Acids, Branched-Chain/metabolism , Exercise , Protein Biosynthesis , Infant Nutritional Physiological Phenomena , Athletic Injuries , Muscle Proteins
4.
Japanese Journal of Physical Fitness and Sports Medicine ; : 269-278, 2006.
Article in Japanese | WPRIM | ID: wpr-362370

ABSTRACT

It has recently demonstrated that central fatigue during sustained maximal voluntary contraction (MVC) progresses faster in the presence of delayed onset muscle soreness due to eccentric contractions than in normal states (Endoh et al., 2005). However, it remains to be clarified whether these findings are related to muscle damage or muscle pain induced by eccentric contractions. The present study investigated which factor plays a more critical role in the earlier onset of central fatigue during sustained MVC with muscle pain induced by injecting hypertonic saline. Ten healthy male right-handed subjects (age, 21~32 yrs.) were asked to perform brief MVCs (~3 sec) before and after injection of isotonic saline (0.9%, 1.0 ml, ISO) or hypertonic saline (5.25%, 1.0 ml, HYP) into the left biceps brachii. The subjects then performed 1 min MVC (fatigue test) with isometric elbow flexion was done in ISO or HYP condition or intact control condition (CON). During these contractions, transcranial magnetic stimulation was delivered to the contralateral motor cortex to evaluate voluntary activation (VA), the motor evoked potential (MEP) and electromyographic (EMG) silent period (SP). Ratio of root mean square of the EMG and elbow flexion force (EMGrms/F) was also measured.The peak pain induced by the injection of HYP was significantly higher than that of ISO (p<0.01). There was no significant difference in either the maximum size of the M response or the twitch force between ISO and HYP (p>0.05). However, during the brief MVCs, both maximal force (p<0.01) and VA (p<0.05) for HYP were significantly decreased compared to those for ISO. During the fatigue test, although MVC, VA, MEP and SP were significantly altered (p<0.05~0.01), there was no significant difference among CON, ISO and HYP (p>0.05). There was no significant difference in EMGrms during the fatigue test (p>0.05).These results suggest that peripheral force-producing capacity remained intact after the injection of ISO and HYP during sustained MVC, and that progression of central fatigue during sustained MVC was less affected by the increased group III and IV afferent activity induced by HYP.

5.
Japanese Journal of Physical Fitness and Sports Medicine ; : 201-210, 1999.
Article in Japanese | WPRIM | ID: wpr-371850

ABSTRACT

To elucidate the phenomenon of central fatigue, we investigated the changes in the plasma amino acid level and false neurotransmitter (FNT) level during ultra-endurance exercise. Twenty-one male Japanese participants of the 1993 Ironman Japan Contest, held at Lake Biwa, were examined. Blood sampling and a questionnaire on the Profile of Mood States (POMS) test were collected two days before, immediately after and one-day following the race. The POMS questionnaire showed various changes especially due to fatigue. Indeed, the fatigue score significantly increased after the race. Although the confusion score significantly increased after the race, it quickly recovered to the pre race level the following day. The plasma concentration of the branched-chain amino acids (BCAA) decreased after the race, while the level of aromatic amino acids (AAA) increased, thus resulting in a significant decrease in the BCAA/AAA ratio. The plasma level of octopamine, one type of FNT, significantly increased after the race (p<0.01) . The blood ammonia level increased after the race, but recovered to the pre-race level one-day after the race. Although no change was observed in the total tryptophan (Trp) level, the level of free Trp significantly increased during the race. The significant increases in the plasma 5-hydroxyindoleacetic acid (5HIAA), homovanillic acid (HVA) and HVA/dihydroxyphenylacetic acid (DOPAC) ratios thus suggest the serotonin (5 HT) and dopamine (DA) neuron systems activated after the race. In conclusion, ultra-endurance exercise caused a disorder of both the amino acid and monoamine metabolisms. Furthermore these changes were also related with mood changes, especially fatigue, i. e. central fatigue. These results suggest that the measurement of both the plasma BCAA/AAA ratio and FNT may therefore be useful in quantifying exercise induced central fatigue.

6.
Chinese Journal of Sports Medicine ; (6)1982.
Article in Chinese | WPRIM | ID: wpr-584576

ABSTRACT

Objective In order to investigate the changes of glycogen and lactate in cortex after exercise-induced central system fatigue. Methods Central fatigue model was established according to Bedford weight/maximal oxygen uptake equation. The rats were divided into three groups: control group (C), sedentary-exhausted group (SE), and overtraining group (O). Results After 1 week exercise, compared with control group, the weight of rats in SE and O group increased slowly. BUN of SE and O group increased significantly to 4.78?1.99 mmol/L and 8.48 ?0.92 mmol/L respectively,but Hb showed no changes. Compared with C group, both DA and DA/5-HT of O group decreased dynamical which were 309.04?63.68 ng/ml?g and 0.42?0.25 respectively. The latency of SEP in O group distinctly delayed, P1: 2.98?0.55ms, N1: 4.23?0.35ms, P2: 5.28?0.60ms. Regarding to 5-HT, no significant difference was found among all groups. Cortex lactate concentration of O (1.46mg/100g )and SE(1.12 mg/100g) group were significantly higher than control group(0.92 mg/100g). There was a tendency of glycogen decrease but had no significant difference among all groups. Conclusion The results suggested that lactate and glycogen might have close relationship with central fatigue and were the possible reasons to cause central fatigue.

SELECTION OF CITATIONS
SEARCH DETAIL